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Abstract This paper assesses the predictive accuracy of

various analytical models and one numerical model (a

CART-ANFIS network) of springback that are available

with the existing literature using the mean square error and

its decomposition into systematic and random components

as a comparative measure of predictive accuracy. The

numerical model was found to have no systematic bias in

the springback predictions made, whilst for the analytical

models the systematic bias accounted for about 11% of the

mean square error. The CART-ANFIS network also had

the smallest MSE and the prediction errors made were all

random in nature. The paper ends by giving some illus-

trations of the CART-ANFIS numerical model in finding

the proper die contour to correct for springback so as to

achieve right first-time manufacturing for a wide range of

sheet steels.

Introduction

Government policy, consumer pressure and competition

from materials such as aluminium and plastics have forced

the automotive industry to search for methods of reducing

the weight and improving the fuel economy of vehicles

whose Body in White (BIW) predominantly comprises

steel. Tube hydroforming and Laser Welded Tailor Blanks

(LWTBs) are two relatively new innovations that help to

reduce vehicle weight (see [1, 2]). The use of such advanced

technologies, coupled with holistic design concepts, means

that present-day vehicles are becoming lighter and have

improved crash performance compared to conventional

pressed formed components of the same weight.

Tube hydroforming has already proved successful in

subframe and chassis applications. Standard tube-making

methods are restricted to the production of tubes with a

diameter-to-thickness ratio of 65:1, but BIW structural

components typically require a ratio of around 100:1. There

has therefore been limited uptake of this technology in the

production of BIW components. However, the Corus

Tubular Blank process [3, 4] enables a greater range of

diameter-to-thickness ratios and therefore a larger scope

for the manufacture of BIW parts. The Corus Tubular

Blank Machine receives a flat sheet blank which undergoes

a multiple pressing operation using a circular punch-and-

die profile. The open formed tubular shape is then laser

welded to form a closed section. The number of pressings

required is dependent upon the degree of formability of the

sheet blank and also the amount of forming pressure

required to deform the sheet blank.

The major technical issue concerned with Corus Tubular

Blanks is the effect of material elastic recovery (referred to

as springback) after forming has taken place. The magni-

tude of this elastic recovery depends upon both material

and forming properties. Whilst it is difficult to have full

control over the material properties, forming properties are

controllable, especially in the simple forming process of

the Corus Tubular Blank. Thus the commonest method of

compensating for springback is to bend the part to a smaller

radius of curvature than is desired, so that when springback

occurs, the component has the correct radius. This trial-

and-error process can however be time consuming and

expensive. Right first-time manufacturing of Corus Tubular

Blanks can be achieved through use of an accurate

predictive model of springback.
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The aim of this paper is to assess the accuracy of various

analytical models and a numerical model of springback and

then show how the best of these models can be used to find

the proper die contour to correct for springback so as to

achieve right first-time manufacturing for a wide range of

sheet steels. To achieve this objective the paper is struc-

tured as follows. Section ‘‘Technical background’’

describes the Corus Tubular Blank Machine, how spring-

back is measured and the experimental data obtained for

assessing the accuracy of various springback models.

Section ‘‘Predictive models of springback’’ outlines various

analytical models and a numerical model for springback

together with the methods of estimating the parameters of

some of these models. Section ‘‘Predictive capability’’

describes some statistics for assessing the predictive

accuracy of these models and the results from each of these

models is given in section ‘‘Results’’. Section ‘‘Right first-

time manufacturing’’ illustrates how the best model can

be used for right first-time manufacturing and section

‘‘Conclusions’’ concludes.

Technical background

Bending and springback

Bending is the process by which a straight length is

transformed into a curved length. The definitions of the

terms used in bending are illustrated in Fig. 1a. The bend

radius (R) is defined as the radius of curvature on the inside

surface of the bend. For elastic bending below the elastic

limit the strain passes through zero halfway through the

thickness of the sheet at the neutral axis. In plastic bend-

ing—beyond the elastic limit—the neutral axis moves

closer to the inside surface of the bend as such bending

proceeds. Since the plastic strain is proportional to the

distance from the neutral axis, fibres on the outer surface

are strained more than fibres on the inner surface are

contracted. A fibre at the mid-thickness is therefore stret-

ched so that thickness decreases at the bend to preserve

constant volume. The smaller the radius of curvature, the

greater will be the decrease in thickness on bending.

A common forming difficulty during bending is

springback. Springback is the dimensional change of the

formed part after the pressure of the forming tool has been

released. It results from the changes in strain produced by

elastic recovery. This springback during bending is illus-

trated in Fig. 1b. This elastic recovery and therefore

springback will be greater, the higher the yield stress and

the lower the elastic modulus. The radius of curvature

before release of a given load (R0) is smaller than the radius

(Rf) after release of this load. But the bend allowance (B in

Fig. 1a) is the same before and after bending so that

B ¼ R0 þ
h

2

� �
a0 ¼ Rf þ

h

2

� �
af ð1aÞ

where h is the material thickness and a the bend angles (see

Fig. 1b). This applies only if the mid-surface is also the

neutral axis. Springback can be defined and measured from

this in a number of ways. Defined in terms of the bend

angle, the springback ratio is

K1 ¼
af

a0

¼ R0 þ h=2

Rf þ h=2
¼ 2R0=hþ 1

2Rf =hþ 1
ð1bÞ

The springback ratio defined in this way is independent of

sheet thickness and depends only on the ratio of bend

radius to sheet thickness. Defined in terms of the bend

radius, the springback ratio is

K2 ¼
R0

Rf
ð1cÞ

In this paper springback is defined and measured using

Eq. 1c.

The Corus Tailored Blank and test rig machine

The Corus Tailored Blank Machine was developed by

Soudronic Manufacturing, with initial conceptual ideas

Fig. 1 (a) Definition of terms used in bending. (b) Springback in

bending
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coming from the research and development centre at the

then Hoogovens Strip Steel in Ijmuiden, Holland [5]. The

basic principle of the machine is to receive a flat sheet

blank, which is then pressed using a circular punch-and-die

profile used in conjunction with a hydraulic press. The

open formed tubular shape is then finally laser welded to

form a closed section. Pressing of the sheet is done in an

uneven number of steps, with the sheet extremities pressed

first and the unformed sheet progressively pressed towards

the centre of the blank until the final pressing is carried out

in the centre of the blank—see Fig. 2a. The number of

pressings required for the blank is dependent upon the

degree of formability of the blank and also the amount of

forming pressure required to create the blank. The machine

is currently capable of creating tubes with diameters in the

range of 60–250 mm, with a thickness in the range of 0.6–

2.75 mm and a length in the range of 900–4,750 mm [6].

The test machine used for the experimentation carried

out during this research was a modified INSTRONTM MTS

8580. It is a 300 kN servo-hydraulic machine having a

single force measuring system provided by a load cell. The

system incorporates force scale settings giving a single

range of 0 -300 kN in tension and compression (standard

calibration BS EN 10002-2), coupled with programmable

input and output hardware/software (INSTRONTM Wave-

maker)—see Fig. 2b. This made it possible to control all

suitable inputs for the pressing and the data acquisition

during the pressing operation.

The experimental pressing tools, which were used in

conjunction with the above test rig, were made of machine

tool steel and the surfaces in contact with the material

samples were case hardened. Prior to pressing, the tooling

was degreased using an ethanol solution and then wiped

clean using lint-free cloth. This test machine can be fitted

Fig. 2 (a) Corus Tubular Blank

manufacturing route. (b) MTS

testing machine and tooling

used during experimentation
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with a variety of different punch-and-die combinations, and

the type of tooling fitted is similar to the tooling on the

Corus Tailored Blank Machine shown in Fig. 2a.

The data

This MTS experimental tooling rig was used to test a

variety of different steels that had differing material

properties and thicknesses over a wide range of bend

radiuses. The full test matrix, together with the springback

measurements made under these conditions, is shown in

Table 1. As can be seen from the first column of this table,

the steels tested range from mild steels to CMn, IF and DP

steels. The material properties tested included the yield

stress (MPa) and Young’s Modulus, whilst the process

variables included material thickness and neutral axis bend

radius (both measured in mm). These material and process

variables, will be referred to later as test variables. For the

purpose of data analysis, this paper scales all the test

variables to lie in the range 0–1 through use of the formula

xj;i ¼ ½x�j;i �minðx�j;iÞ�=½maxðx�j;iÞ �minðx�j;iÞ� ð1dÞ

where x�j;i is the ith value (for which there are n) for the jth test

variable (of which there are m), maxðx�j;iÞ is the maximum

value for all n measurements made on test variable j and

minðx�j;iÞ is the minimum such value. As can be seen from

Table 1, there are n = 39 steel specimens tested and m = 4

material or process conditions measured for each specimen.

The same scaling procedure can be used for springback

yi ¼ ½y�i �minðy�i Þ�=½maxðy�i Þ �minðy�i Þ� ð1eÞ

where y�i is the ith value for springback as measured using

Eq. 1c.

Predictive models of springback

Analytical models

As briefly mentioned in section ‘‘Bending and Springback’’

above, springback will be greater, the higher the yield

stress and the lower the elastic modulus. This has been

expressed in the literature in a variety of different ways.

Gardiner [7] and Queenner and DeAngelis [2], using data

from a number of high temperature alloys, have indicated

that to a first approximation the springback in bending can

be expressed by

K2 ¼ 4
R0r0

Eh

� �3

�3
R0r0

Eh
þ 1 ð2aÞ

where r0 is the plain strain yield stress and E is modified

(plain strain value) Young’s Modulus. Other approximations

based on the same variables are also to be found in the

literature. Marciniak and Duncan [8] proposed

K2 ¼ 1� 3
R0

h

� �
r0

E

� �
ð2bÞ

Zhang and Hu [9] proposed a similar expression using

Poisson’s ratio. Leu [10] derived a slightly more complex

equation that also took into account the ultimate tensile

strength of the material and the normal plastic anisotropy

ratio. This model for springback was derived from a

number of simplifying assumptions. First, a ridged, strain-

hardening and anisotropic material is assumed and the

deformation in bending is assumed to occur under the plane

strain condition. The Bauschinger effect and strain rate are

neglected, and Hill’s [11] theory of plastic anisotropic is

adopted to describe the anisotropic characteristics of the

sheet metal. Finally, the strain-hardening characteristics of

the sheet metal are assumed to follow the form

re ¼ Aen
e ð2cÞ

where re denotes the effective stress, ee denotes the

effective strain and A and n are material constants. Under

these conditions Leu showed that springback could be

predicted using

K2 ¼
ru

e�nnn

� � 1þ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p
� �1þn

3ð1� m2Þ
2Eð1þ nÞ

� �
h

2R0

� �n�1

ð2dÞ

where ru is ultimate tensile strength and r is the normal

anisotropic value. Again n is the strain-hardening compo-

nent as defined in Eq. 2c above.

The first two models above require no parameter esti-

mation, whilst the last requires that the value for n be

estimated from the experimental data.

Numerical models

There are many numerical procedures currently available

for modelling experimental data obtained from a particular

manufacturing process. The two most commonly used

techniques are response surface methodology (RSM) and

artificial intelligence (AI).

Response surface methodology is a well-established

and proven collection of mathematical and statistical

techniques useful for the modelling and analysis of

manufacturing processes in which a response of interest

is influenced by several variables and the objective is to

optimise the response in some way [12]. The description

of the bending process described above suggests that

springback, to be given the general name response and

symbol y, may be related to the following material and

J Mater Sci (2008) 43:2562–2573 2565

123



process variables: x1 is the sheet thickness, x2 is Young’s

Modulus, x3 is the yield strength and factor x4 is the

neutral axis bend radius (all in scaled units). Then the

response surface is given by

y ¼ f ðx1; x2; x3; x4Þ ð3aÞ

where f() is some function that describes the relationship

existing between springback and the process and material

variables described above. In most RSM problems the form

of f() is unknown and the first step is therefore to find a

suitable approximation for the true functional relationship

between y and the test variables. As many manufacturing

Table 1 Springback results from the MTS experimental tooling rig

Material i 1 2 x�1;i x�2;i x�3;i x�4;i x�5;i y�i

Nizec 260 1 0 50 0.693 214,026 259 49.6535 389 0.701

GI IF240 2 0 50 0.653 206,901 242 49.6735 376 0.7098

DP 1300 3 90 7 0.996 187,000 1369 7.498 1489 0.7973

GA 260 4 90 43.5 0.991 214,000 312 43.0045 419 0.8146

DP 350 5 90 50 1.594 219,000 362 49.203 554 0.8167

CMn 500 6 90 50 2.001 213,000 555 48.9995 624 0.8175

GA 260 7 0 43.5 0.997 199,000 286 43.0015 417 0.8202

CMn 500 8 0 50 2.015 199,000 517 48.9925 610 0.8214

DP 350 9 0 50 1.532 208,000 361 49.234 547 0.8225

DP 350YP 10 90 50 1.49 215,000 403 49.255 443 0.832

GA 300 11 90 50 2.02 198,000 322 48.99 442 0.8444

GA 300 12 0 50 2.012 192,000 317 48.994 436 0.8444

DP 350YP 13 0 50 1.484 202,000 369 49.258 435 0.852

GA140 14 90 50 0.747 194,382 149 49.6265 305 0.8575

GA140 15 0 50 0.744 210,802 139 49.628 308 0.8627

GA 300 16 90 18.5 0.838 215,000 330 18.081 436 0.8629

DP 850 17 45 7 1.191 176,000 850 7.5955 1089 0.863

GA 300 18 0 18.5 0.787 204,000 322 18.1065 459 0.869

GA 260 19 90 18.5 0.813 229,000 274 18.0935 423 0.8754

GA 260 20 0 18.5 0.814 202,000 253 18.093 417 0.8793

GA 140 21 90 43.5 1.007 201,000 168 42.9965 305 0.884

DP 630 22 90 7 1.223 184,000 631 7.6115 836 0.8954

GA 200 23 90 50 2.07 194,000 207 48.965 332 0.8972

GA 200 24 0 50 2.047 184,000 201 48.9765 340 0.9

DP 400 25 45 7 1.191 188,000 405 7.5955 671 0.9271

GA 140 26 90 18.5 0.812 197,000 145 18.094 303 0.9309

DP 500 27 90 7 1.956 181,000 509 7.978 812 0.9315

GA 140 28 0 18.5 0.811 201,000 159 18.0945 307 0.9335

GI IF 240 29 0 7 0.653 206,901 242 7.3265 376 0.9402

CMn 700 30 90 7 2.545 176,000 699 8.2725 776 0.9434

DP 400 31 45 7 1.782 171,000 425 7.891 653 0.9485

DP 350YP 32 0 7 1.484 202,000 369 7.745 435 0.9617

GA 140 33 0 7 0.744 210,802 139 7.3735 308 0.968

Nizec 260 34 90 50 0.703 215,713 254 49.6485 385 0.6984

GA 180 35 90 7 0.688 191,000 185 7.344 311 0.9503

GA 140 36 0 43.5 1.005 184,000 161 42.9975 305 0.892

DP 800 37 0 7 0.998 196,000 836 7.4955 1076 0.8392

DP 350 38 0 7 2.025 172,000 371 8.0125 609 0.9621

GI IF240 39 90 50 0.653 212,187 261 49.6735 373 0.7047

1 = Orientation (�), 2 = Bend Radius (mm), x�1;i = Thickness (mm), x�2;i = Young’s Modulus, x�3;i = Yield Stress (MPa), x�4;i = Neutral Axis Bend

Radius (mm), x�5;i = Ultimate Tensile Strength (MPa), y�i = Springback (as measured by K2 in Eq. 1c)
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processes are non-linear in nature, Myers and Montgomery

[13] recommend approximating f() by a second-order

response surface models of the form

f ðx1;x2;x3;x4Þ¼b0þbj

X4

j¼1

xjþkjv

X4

j¼1

X4

v¼jþ1

xjxvþ/j

X4

j¼1

x2
j þx

ð3bÞ

where bj, /j and kjv are the parameters of the model. The

kjv measure interaction effects and reflect the extent to

which a change in the response following a change in the

level of a test variable depends partly on the value for

another test variable. x is the component of y that cannot

be explained by the model. Provided that x is a random

variable, this model provides a reasonable approximation

to the response surface. For all these models the parameters

b0, bj, /j and kjv require estimation using the linear least

squares estimation procedure.

Artificial intelligence is a big subject area covering

numerous types of neural network architectures, genetic

algorithms and expert or control systems. A relatively new

and interesting approach that merges the subject areas of

neural networks and control systems is the fuzzy—neural

network. A popular neural network architecture is the

multi-layer perceptron (MLP). However, whilst MLPs are

usually better than the RSM at approximating the response

surface, they are very much a black box technique in that

they generate very complex functions that simply mimic

the data accurately. What they cannot do is abstract in the

sense of producing articulated knowledge from the data.

Expert systems are capable of such abstraction through the

use of simple rule-based models. Neuro-Fuzzy modelling is

a new approach that combines the modelling capabilities of

MLPs with the abstracting capabilities of expert systems.

In this paper we concentrate on the hybrid technique

CART-ANFIS that is capable of learning and then fine

tuning hybrid rules.

Characterisation and Regression Trees (CART) is a

technique first developed by Breiman et al. [14]. Here

binary decision trees are used to extract simple if—then-

based decision rules from the experimental data. Figure 3a

is a typical binary regression tree with two inputs (x1 and x2)

and one output y. The decision tree partitions the input

space into a number of non-overlapping rectangular

regions, each of which is assigned a label fi() to represent a

predicted output value. In this illustration the tree identifies

four simple if—then rules. Note that each terminal node has

a unique path that starts with the root node and ends with the

terminal node: the path corresponds to a decision rule that is

a conjunction of various tests or conditions. Typically each

fi() will be a linear function similar to the first two terms in

Eq. 3b. In essence then, instead of using a complex second-

order response surface model, the experimental data are

split up into smaller segments such that over these narrower

ranges the response surface is linear allowing the response

to be modelled using a simpler linear equation over this

region. For each region there is a separate linear equation.

The key question then revolves around the criteria for

deciding how many terminal nodes to have in the decision

tree, i.e., how many segments to split the data up into. In

this paper two rules are used. First, there must be a mini-

mum number of degrees of freedom available for fitting the

fi() functions. In this paper that is taken to be five. Second,

at each node a statistic is worked out for summarising how

well fi() fits the data within its segment. Breiman et al. [14]

used the standard residual sum of squares obtained by

estimating the parameters of fi() using linear least squares.

In this paper we use the predictive residuals of Cook and

Weisburg [15]. Here the linear model fi() is estimated by

least squares using all but one of the experimental data

points in its segment. The difference between the actual

value for this data point and that predicted from the model

is the predicted residual. When this procedure is repeated

for all data points the resulting sum of these predicted

residuals is called the predicted residual sum of squares

(PRESS). The estimated value for the parameters of fi() that

minimise PRESS is the one best at predicting data not seen

during this estimation procedure and so has the best chance

of being general enough to accurately predict new data sets

that are presented to it. That is, the linear models fi() are

subjected to cross validation. A pair of terminal nodes on

the decision tree are obtained when the values for their

PRESS statistics sum to a figure that is no smaller than that

associated with their root node.

Values for a, b and c in Fig. 3a are found by sorting

each input variable. First the data set is sorted by x1 from

lowest to highest. The value for x1 in the p + 5 position of

this sorted list is taken to be the first estimate for a (p is the

number of parameters to be estimated in the fi() function).

The data are split at a and the PRESS statistics computed

for each data segment. These are added together to give the

total PRESS. The value for x1 in the p + 5 + 1 position of

this sorted list is taken to be the next estimate for a. This

process is repeated until all the x1 values in the sorted list

have been analysed in the above way. The value for a is

then taken to be that value which minimises the total

PRESS statistic. Values for b and c are found in the same

way after the value for a has first been decided.

The problem with this approach is that the resulting

modelled response surface is highly discontinuous in that it

changes abruptly at the decision rules. This problem is

overcome by fuzzyfying the decision rules. For example,

the crisp decision rule associated with the leftmost branch

of the binary tree in Fig. 3a is
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If x1\a and x2\b then y ¼ f1ðÞ

In fuzzy expert systems, membership functions are used

to quantify possibilities [16]. Possibility is a fuzzy measure

indicating the degree of evidence or belief that a certain

value for say x1 belongs to a set, say, set x1 \ a. A

membership function has a value between 0 and 1 such that

x
1

values further and further below a, have membership

values closer and closer to one. A common functional form

used for the membership function is the sigmoidal function

f1()

f3()

f4()f2()

x1 = a 

x2 = b 

x2 = c 

x1< a 

x2< b x2< c 

y = f1() y = f2() y = f3() y = f4()

Yes Yes

No

No No

∑
=

++=
2

1
10211 ),(

j
jj xxxf ξδδ ∑

=

++=
5

4
23212 ),(

j
jj xxxf ξδδ ∑

=

++=
11

10
49214 ),(

j
jj xxxf ξδδ∑

=

++=
8

7
36213 ),(

j
jj xxxf ξδδ

Yes

x1

x2

µx1<a

INV

INV

INV

f1()

f2()

f3()

f4()

Layer 1: Memberships Layer 2 Layer 3:Rule outputs 

yΣ

µx2<c

µx2<b

(a)

(b)

Π

Π

Π

Π

Layer 4

Fig. 3 (a) A binary decision

tree and its input space

partitioning. (b) ANFIS

architecture corresponding to

the representation shown in Fig.

3b. Values for w given by Eqs. 5
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lx1\a ¼ 1� 1

1þ exp½�jðx1 � aÞ� ð4aÞ

where j is a parameter requiring estimation. The value

for j determines the steepness of the membership func-

tion at a. So the further x1 is below a, the greater will be

the value for lx1
\a , indicating a stronger belief that

that value for x1 belongs to the set x1 \ a. lx1
\a

varies over the range 0–1, with 1 indicating the strongest

possible belief.

Finally, the parameters of the model are fined tuned

using a particular type of neural network. This network is

called an ANFIS—adaptive network-based fuzzy interfer-

ence system [17]. There are various ANFIS architectures,

but the one using a first-order Sugeno fuzzy model [18] is

the most common. The layers of this ANFIS network are

shown in Fig. 3b for the decision rules shown in Fig. 3a

Rule 1: If x1 \ a and x2 \ b, then y = f1()

Rule 2: If x1 \ a and x2 C b, then y = f2()

Rule 3: If x1 C a and x2 \ c, then y = f3()

Rule 4: If x1 C a and x2 C c, then y = f4()

In the first layer of the ANFIS network, each of the i

values for x1 and x2 is given membership quantities using

the following sigmoidal functions

lx1\a ¼1� 1

1þ exp½�j1ðx1 � aÞ� with inverse (INV)

lx1 � a ¼
1

1þ exp½�j1ðx1 � aÞ� ð4bÞ

lx2\b ¼1� 1

1þ exp½�j2ðx1 � bÞ� with inverse (INV)

lx2 � b ¼
1

1þ exp½�j2ðx1 � bÞ� ð4cÞ

lx2\c ¼1� 1

1þ exp½�j3ðx1 � cÞ� with inverse (INV)

lx2 � c ¼
1

1þ exp½�j3ðx1 � cÞ� ð4dÞ

where j1 to j3 are parameters requiring estimation. In layer

2 weights are determined that represent the possibility that

each pairing for the i values of x1 and x2 belongs to one of

the four sets given by the decision rules above. These

weights are given by

w1 ¼ ðlx1\aÞðlx2\bÞ or w1 ¼ min½ðlx1\aÞ; ðlx2\bÞ�
ð5aÞ

w2 ¼ ðlx1\aÞðlx2� bÞ or w2 ¼ min½ðlx1\aÞ; ðlx2� bÞ�
ð5bÞ

w3 ¼ ðlx1� aÞðlx2\cÞ or w3 ¼ minðlx1� aÞ; ðlx2\cÞ�
ð5cÞ

w4 ¼ ðlx1� aÞðlx2� cÞ or w4 ¼ minðlx1� aÞ; ðlx2� cÞ�
ð5dÞ

These are two examples of a T-norm operator (the

product or the minimum) for working out the possibility, for

example that x1 is less than a AND x2 is less than b(w1). In

Fig. 3b, P stands for the use of the first T-Norm shown in

Eqs. 5. In layer 3 each value for fi() is multiplied by its wi

value so that more emphasis is placed on the linear function

corresponding to the rule most likely to describe the x1 and

x2 pairing (the form for fi() is as shown in Fig. 3a). Finally,

in layer 4 these weighted functions are added up to give the

prediction for y coming out of the ANFIS network.

Conjugate gradient methods are then used to optimise the

values for j1 to j3 and all the parameters of f1() to f4().

Predictive capability

A number of statistics are used to assess the predictive

accuracy of the above springback models. The mean square

error (MSE) is defined as the average (over n results)

squared difference between the actual springback value (yi)

and that predicted by a particular model ðŷiÞ: Squares are

taken to prevent over- and under-predictions offsetting

each other in the averaging process. The MSE could then

be square rooted to be in the same units as yi

MSE ¼ 1

n

Xn

i¼1

yi � ŷi½ �2 ¼ 1

n

Xn

i¼1

e2
i ð6aÞ

Thus if the model used is that given by Eq. 3b, the

predicted values are given by

ŷi ¼ b0 þ bj

X4

j¼1

xj þ kjv

X4

j¼1

X4

v¼jþ1

xjxv þ /j

X4

j¼1

x2
j

where bj, /j and kjv are estimated from the n data points.

The MSE is a useful way of assessing the predictive

accuracy of a model because this error, following Theil’s

analysis [19], can be decomposed into a number of

different components

MSE ¼ �e2 þ S2
e ð6bÞ

where �e is the average prediction error calculated from the

n data points and S2
e is the sample variance of the predic-

tion error (biased in small samples). A good model will

therefore predict with an average error close to zero and

with only small over-/under-predictions around this aver-

age, i.e., small variation in the prediction error.

A plot of actual versus predicted springback values can

be used to further decompose this MSE. On such a plot, all

the data points should fall on a 45� line if the springback
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model provides a perfect prediction. That is q = 0, q1 = 1

and S2
f ¼ 0 in

yi ¼ q0 þ q1ŷi þ fi ð7aÞ

where fj is the extent to which the ith springback prediction

differs from q0 þ q1ŷi and S2
f is the variance of such

disturbances. Rearranging Eq. 7a above for the prediction

error and assuming ŷi and fi are independent of each other

gives

S2
e ¼ ðq1 � 1Þ2S2

ŷ þ S2
f ð7bÞ

where S2
ŷ is the variance of the predictions. Substituting

Eq. 7b into Eq. 6b gives

MSE ¼ �e2 þ ðq1 � 1Þ2S2
ŷ

n o
þ S2

f ð8aÞ

or

1 ¼ �e2

MSE
þ
ðq1 � 1Þ2S2

ŷ

n o
MSE

þ
S2

f

MSE
¼ UM þ UR þ UD

ð8bÞ

Equation 8b shows that a proportion of the MSE is due to

the average of the model predictions differing from the

average of the actual values —UM. Another part is due to

the slope of the best fit line on the actual v prediction plot

differing from 1, UR. Both UM and UR therefore represent

systematic errors, and large values for these two terms

suggest that the springback model is incomplete in some

way. For example, it may suggest that some explanatory

variables are missing from the model, or that the models

functional relationship between springback and the test

condition is incorrect. A final part of the MSE is due to the

data points on the actual v prediction plot not all lying on

the best fit line, UD. When they all lie on the best fit line

S2
f ¼ 0: As the fi is random in nature, UD represents ran-

dom prediction errors. Ideally, a springback model should

have a very small MSE with UM = UR = 0 and 1 ffi UD:

Results

Figure 4 plots the measured springback results against

material thickness, Young’s Modulus, yield stress and

neutral axis bend radius. It can be seen that the data have a

lot of experimental scatter present within it. However, the

strongest correlations are observed to be those between

springback and Young’s Modulus (R2 = 24.45%), and

between springback and the neutral axis bend radius

(R2 = 42.23%). Material thickness and yield strength

appear to have a much smaller impact on springback.

However these are linear correlation coefficients, and the

true relationships between these variables may be non-

linear in nature so that the above interpretations may be

misleading.

The predictive accuracy of various analytical models is

summarised in Fig. 5 and Table 2. Figure 5a and b shows

clearly that both analytical models produce fairly reason-

able predictions. The best fit lines through the experimental

data reveal a small amount of systematic bias with the

intercept terms differing slightly from zero and the slope

terms differing slightly more from unity. This is confirmed

in Table 2. All these models have very similar mean square

errors. For each model around 88% of the prediction errors

were random in nature, and the main source of systematic

error for each model was the deviation of q1 in Eq. 7a from

unity (i.e., UR rather than UM).

Table 3 shows the results of the CART analysis. As can

be seen from the Table, the procedure described in section

Fig. 4 Springback as a function of (a) Material thickness, (b) Young’s Modulus, (c) Yield Strength and (d) Neutral axis bend radius
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‘‘Numerical models’’ above identified three basic splits in

the data corresponding to all those data points with a scaled

yield stress less than or equal to 0.0992, all those data

points with a scaled yield stress greater than 0.0992 but

with a scaled thickness less than or equal to 0.4424 and all

those data points with a yield stress greater than 0.0092 and

a scaled thickness greater than 0.4424. Table 3 shows the

estimates made for the parameters of the simple linear

numerical model (containing the first two terms of Eq. 3b)

that was applied separately to each of these subsets of data.

In each subset, Young’s Modulus was always statistically

insignificant. This conclusion probably comes about

because the data set is only for steel, and the modulus in the

experiments shown in Table 1 varied only over the narrow

range of 120—220 GPa. The worst performing linear

model was that fitted to the first subset of data (x3i

B 0.0992) where the model f1() explained nearly 93% of

the variation in springback. The percentage rose to around

97% in the second subset of data and around 99% in the

third subset of data. This picture is confirmed also by the

PRESS statistics.

Finally, the CART model was fuzzified by integrating it

into an ANFIS network. This CART-ANFIS network pre-

dicts springback through the following estimated equations

yi ¼ w1;if1;iðÞ þ w2;if2;iðÞ þ w3;if3;iðÞ ð9aÞ

where

f1;iðÞ ¼ 1:31269� 0:9448x1;i� 1:8933x2;i� 9:7294x3;i

þ 0:1962x4;i

f2;iðÞ ¼ 1:3623þ 5:5162x1;iþ 2:7888x2;i� 4:5244x3;i

� 2:2389x4;i

f3;iðÞ ¼ 0:3549� 1:2928x1;i� 1:3456x2;iþ 5:4331x3;i

þ 0:5992x4;i

ð9bÞ

and

Fig. 5 (a) Actual versus

predicted springback using the

analytical technique proposed

by Gardiner [7] and Queenner

and DeAngelis [2]. (b) Actual

versus predicted springback

using the analytical technique

proposed by Marciniak and

Duncan [8] and Zhang and Hu

[9]

Table 2 The MSE and its decomposition for various analytical

springback models

Gardiner [7] and Queenner

and DeAngelis [2]

Marciniak and Duncan [8]

and Zhang and Hu [9]

MSE 0.00639 0.00637

UM 1.73 2.71

UR 9.43 8.87

UD 88.84 88.42

MSE is the mean squared error as defined by Eq. 6a. UM, UR, and UD

are % decompositions of the MSE as defined by Eq. 8b
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w1;i ¼ 1� 1

1þ exp½�3:2463ðx3;i � 0:0992Þ�

w2;i ¼ min
1

1þ exp½�3:2463ðx3;i � 0:0992Þ� ;
�

1� 1

1þ exp½�2:5120ðx1;i � 0:4424Þ�

�

w3;i ¼ min
1

1þ exp½�3:2463ðx3;i � 0:0992Þ�;
�

1

1þ exp½�2:5120ðx1;i � 0:4424Þ�

�

ð9cÞ

Figure 6 summarises the predictive performance of this

CART-ANFIS model. It performs much better than all the

analytical models. The best fit line in Fig. 6 has an inter-

cept very close to zero and a slope of unity so that this

model has negligible amounts of systematic bias in pre-

dicting springback. For the analytical models about 11% of

the errors made in prediction were systematic in nature.

This is confirmed in Table 4 where UM = UR = 0 and in

Table 2 where UM + UR & 11%. The MSE of the CART-

ANFIS model is also about half that of the two analytical

models studies above.

This suggests that springback can be adequately mod-

elled using a simple linear regression equation, provided

that it is applied separately to appropriately chosen subsets

of the data. This offers a very simple technique for anal-

ysing what is a quite complex relationship.

Right first-time manufacturing

This CART-ANFIS model can now be used to compensate

for springback and so ensure right first-time manufacturing.

All that is required is that a material is selected for the

manufacture of the tubular shape. Once the material and its

thickness are selected this predetermines the value for the

yield stress and Young’s Modulus. Then the bend radius

Table 3 Results of CART analysis

Parameter/Variable If x3i B 0.0992

then f1() =

If x3i [ 0.0992 and x1i B 0.4424

then f2() =

If x3i [ 0.0992 and x1i [ 0.4424

then f3() =

b0/Intercept 1.22192 (11.08*) 0.74721 (16.45*) 0.88966 (21.90*)

b1/x1 0.54143 (3.75*) 0.72219 (9.31*) 0.23620 (3.07*)

b2/x2 -0.25548 (-1.26) 0.00545 (0.11) -0.079829 (-1.27)

b3/x3 -4.15477 (-5.61*) -0.54865 (-11.82*) -0.45902 (-4.12*)

b4/x4 -0.58325 (-8.94*) -0.43172 (-15.28*) -0.42052 (-11.74*)

R2 92.50% 96.65% 99.41%

R2
PRESS 88.27% 89.35% 98.93%

r 0.09797 0.03111 0.01780

PRESS 0.22522 0.03695 0.00517

All parameters were estimated using linear least squares. The Student t statistics for testing the null hypothesis that the true parameters are equal

to zero are shown in brackets

* t statistic rejects the null hypothesis at the 10% significance level. R2 is the coefficient of determination adjusted for degrees of freedom

calculated from the least squares residuals. R2
PRESS is the coefficient of determination adjusted for degrees of freedom calculated from the

predictive residuals. r is the standard error of the least squares residuals and PRESS is the sum of the squares of the predictive residuals. Values

for xji are scaled values derived from Eq. 1d

Fig. 6 Actual versus predicted

springback using the CART-

ANFIS numerical technique

proposed by Jang et al. [17]
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can be chosen so as to achieve a target springback and this

allowance for springback made so that the open tubular

shape welds together correctly. For example, suppose

material Nizec260 in Table 1 is the material chosen for the

manufactured tube. It has a yield strength of around

257 MPa with Young’s Modulus around 214,870 MPa (in

scaled terms x2 = 0.756 and x3 = 0.0959). A springback

compensation of say 0.82 (in scaled terms y = 0.453) can

then be achieved through the correct selection of the bend

radius. These are found simply by solving Eq. 9 under

these conditions, i.e.,

0:453 ¼ w1;if1;iðÞ þ w2;if2;iðÞ þ w3;if3;iðÞ ð10Þ

where the terms on the right-hand side of Eq. 10 are given

by Eqs. 9b, c above with x2,i - 0.756 and x3,i = 0.0959.

There are a number of combinations of x1 and x4 that

satisfy Eq. 10 and these can easily be found by hand, or

for example, using Excel’s Solver function. For example,

x1 = 0.0217 and x4 = 0.4852 achieve, this level of

springback. These are scaled values for x1 and x4, and in

unscaled units this corresponds to x�1 ¼ 0:694 mm and

x�4 ¼ 27:871 mm. With the bend radius and thickness set at

these values the material will experience a springback of

0.82, and this can be compensated for in the bending

operation to ensure right first-time manufacturing.

This type of calculation can be carried out to find the

bend radii (for a given thickness) needed to achieve other

degrees of springback for this material and for other

materials as well.

Conclusions

This paper looked at a number of analytical models and one

numerical model of springback. Using the MSE and its

decomposition the predictive accuracies of a number of

well-known analytical models of springback were mea-

sured. This was then compared to the predictive accuracies

associated with a CART-ANFIS network. The CART-AN-

FIS network was found to have no systematic bias in the

springback prediction made, whilst for the analytical models

the systematic bias accounted for about 11% of the mean

square error. The paper ended with an illustration of how the

network could be used to calculate the springback for a

particular material with different thicknesses that are sub-

jected to different bend radii in the forming operation.

Knowing this springback, compensation can be built into the

forming operation to ensure right first-time manufacturing.

References

1. Marando RA (1999) Tubular hydroforming: the enabling tech-

nology. In: Proceedings of the international conference on

hydroforming, Fellebach/Stuggart, Germany, October 12–13

2. Queener A, DeAngelis RJ (1968) Trans Am Soc Met 61:757

3. Corus introduces the Tubular Blank for the automotive industry at

http://www.corusgroup.com/en/news/news/2000/2000_tubular_

blank_for_automotive_industr

4. Mullan HB (2004) Formability of Corus Tubular Blanks, Doc-

torate Thesis, University of Wales Swansea

5. Corus celebrates first production contract for laser welded tubular

blanks at http://www.corusgroup.com/en-GB/news/news/2002/

2002_laser_welded_tubular_blanks_celebratio

6. Bollinger E, Jutten F (1999) Tubes for hydroforming. In: Pro-

ceedings of the international conference on hydroforming,

Fellebach/Stuggart, Germany, October 12–13

7. Gardiner FJ (1957) Trans ASME 79:1

8. Marciniak Z, Duncan JL (1992) Mechanics of sheet metal

forming, 1st edn. Edward Arnold, London

9. Zhang T, Hu SJ (1997) J Mater Manufact 106:458

10. Daw-Kwie L (1997) J Mater Process Technol 66(1–3):9

11. Hill R (1950) The mathematical theory of plasticity. Clarendon

Press, Oxford

12. Montgomery DC (2005) Design and analysis of experiments, 2nd

edn. John Wiley & Sons Inc, New York

13. Myers RH, Montgomery DC (2005) Response surface method-

ology: process and product optimisation using designed

experiment. John Wiley & Sons Inc, New York

14. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classifi-

cation and regression trees. Wadsworth International Group,

Belmont

15. Cook RD, Weisberg S (1982) Residuals and influence in

regression. Chapman & Hall, London

16. Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in

engineering, chapter 2. John Wiley & Sons Inc, New York

17. Jang JSR, Sun CT, Mizutani E (1997) Neuro-Fuzzy and soft

computing: a computational approach to learning and machine

intelligence, chapter 12. Prentice Hall, Upper Saddle River

18. Takagi T, Sugeno M (1995) IEEE Trans Syst Man Cybern 15:116

19. Theil H (1966) Applied economic forecasting. Rand McNally &

Company

Table 4 The MSE and its decomposition for the CART-ANFIS

springback model

CART-ANFIS network

MSE 0.00322

UM 0.00

UR 0.00

UD 100.00

MSE is the mean squared error as defined by Eq. 6a. UM, UR and UD

are % decompositions of the MSE as defined by Eq. 8b

J Mater Sci (2008) 43:2562–2573 2573

123

http://www.corusgroup.com/en/news/news/2000/2000_tubular_blank_for_automotive_industr
http://www.corusgroup.com/en/news/news/2000/2000_tubular_blank_for_automotive_industr
http://www.corusgroup.com/en-GB/news/news/2002/2002_laser_welded_tubular_blanks_celebratio
http://www.corusgroup.com/en-GB/news/news/2002/2002_laser_welded_tubular_blanks_celebratio

	Measuring the predictive accuracy of various models �of formability of Corus Tubular Blanks
	Abstract
	Introduction
	Technical background
	Bending and springback
	The Corus Tailored Blank and test rig machine
	The data

	Predictive models of springback
	Analytical models
	Numerical models

	Predictive capability
	Results
	Right first-time manufacturing
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


